The chemical class of "C18orf1 Inhibitors" represents a group of diverse compounds that indirectly influence the activity of the protein encoded by the C18orf1 gene. This collection exemplifies a multifaceted approach to protein modulation, emphasizing the use of various biochemical pathways and cellular processes to impact protein function indirectly. The variety of mechanisms employed by these compounds highlights the complex nature of protein regulation and the potential for modulating protein activity through targeting related cellular pathways.
Among the compounds in this class, agents like Doxorubicin and Cisplatin demonstrate the impact of DNA interaction and damage on protein activity. Doxorubicin, an anthracycline antibiotic, affects DNA replication and repair mechanisms, potentially altering the cellular context and thus influencing the activity of C18orf1. Cisplatin's ability to induce DNA crosslinking exemplifies how DNA damage can lead to changes in protein activity. These compounds underline the role of DNA integrity and repair processes in the regulation of protein functions.
Etoposide and 5-Fluorouracil, affecting topoisomerase activity and nucleotide synthesis, respectively, further illustrate the intricate relationship between DNA repair processes and protein regulation. By influencing these key cellular functions, these compounds can potentially modulate the activity of proteins involved in various pathways, including C18orf1.
Kinase inhibitors such as Sorafenib, by targeting multiple signaling pathways, reflect the complex network of intracellular signaling and its impact on protein activities. Sorafenib demonstrates the potential for broad effects on protein functions, including those related to C18orf1, by modulating key signaling networks within the cell.
The inclusion of immunomodulatory drugs like Tacrolimus and Fingolimod in this class represents another facet of protein modulation. Tacrolimus, through its inhibition of calcineurin, and Fingolimod, by modulating sphingosine 1-phosphate receptor signaling, illustrate the interconnected nature of immune signaling and protein regulation. These compounds showcase the potential of targeting immune responses to indirectly regulate proteins involved in various cellular functions.
Furthermore, the presence of compounds like Curcumin, Methotrexate, and Hydroxychloroquine highlights the role of modulating metabolic, inflammatory, and immune pathways in influencing protein activity. Curcumin's anti-inflammatory and antioxidant properties, Methotrexate's impact on folate metabolism, and Hydroxychloroquine's role in autoimmune disease management elucidate the varied approaches that can be employed to indirectly modulate protein function.
In summary, the "C18orf1 Inhibitors" class represents a comprehensive approach to modulating protein activity, emphasizing the potential of leveraging various biochemical pathways and cellular processes. This class not only sheds light on the complex regulation of proteins like C18orf1 but also underscores the broader implications of such modulation in cellular physiology. As research continues to evolve, a deeper understanding of these biochemical interactions is expected to emerge, offering new perspectives on protein regulation. This approach exemplifies the sophistication of current scientific understanding and the ongoing efforts to develop more effective strategies for modulating protein activity in complex biological systems.
Items 11 to 20 of 21 total
展示:
产品名称 | CAS # | 产品编号 | 数量 | 价格 | 应用 | 排名 |
---|---|---|---|---|---|---|
IWP-2 | 686770-61-6 | sc-252928 sc-252928A | 5 mg 25 mg | ¥1061.00 ¥3227.00 | 27 | |
Wnt 生成抑制剂;防止 FAM210A 参与 Wnt 介导的信号转导。 | ||||||
hydroxychloroquine | 118-42-3 | sc-507426 | 5 g | ¥632.00 | 1 | |
用于治疗自身免疫性疾病的羟氯喹可以调节免疫反应,从而可能影响 C18orf1 的活性。 | ||||||
PD 98059 | 167869-21-8 | sc-3532 sc-3532A | 1 mg 5 mg | ¥440.00 ¥1015.00 | 212 | |
ERK 抑制剂可阻止 FAM210A 的下游磷酸化。 | ||||||
(±)-Blebbistatin | 674289-55-5 | sc-203532B sc-203532 sc-203532A sc-203532C sc-203532D | 5 mg 10 mg 25 mg 50 mg 100 mg | ¥2019.00 ¥3464.00 ¥5133.00 ¥10425.00 ¥19055.00 | 7 | |
肌球蛋白 II 抑制剂;通过细胞骨架干扰影响 FAM210A 介导的细胞运动。 | ||||||
Rapamycin | 53123-88-9 | sc-3504 sc-3504A sc-3504B | 1 mg 5 mg 25 mg | ¥699.00 ¥1749.00 ¥3610.00 | 233 | |
mTOR 抑制剂;通过下调蛋白质合成途径抑制 FAM210A。 | ||||||
Wortmannin | 19545-26-7 | sc-3505 sc-3505A sc-3505B | 1 mg 5 mg 20 mg | ¥745.00 ¥2471.00 ¥4705.00 | 97 | |
PI3K 抑制剂,如 LY294002,会影响 Akt,从而下调 FAM210A。 | ||||||
Fingolimod | 162359-55-9 | sc-507334 | 10 mg | ¥1805.00 | ||
芬戈莫德是一种 1-磷酸鞘氨醇受体调节剂,可影响淋巴细胞迁移,从而可能影响 C18orf1 的活性。 | ||||||
Calyculin A | 101932-71-2 | sc-24000 sc-24000A sc-24000B sc-24000C | 10 µg 100 µg 500 µg 1 mg | ¥1805.00 ¥8462.00 ¥15795.00 ¥33846.00 | 59 | |
PP1/PP2A 抑制剂;防止 FAM210A 去磷酸化,抑制其活性。 | ||||||
FK-506 | 104987-11-3 | sc-24649 sc-24649A | 5 mg 10 mg | ¥857.00 ¥1670.00 | 9 | |
免疫抑制剂他克莫司(Tacrolimus)可抑制钙神经蛋白,从而可能通过调节 T 细胞功能影响 C18orf1 的活性。 | ||||||
Okadaic Acid | 78111-17-8 | sc-3513 sc-3513A sc-3513B | 25 µg 100 µg 1 mg | ¥3215.00 ¥5867.00 ¥14667.00 | 78 | |
PP2A 抑制剂;使 FAM210A 稳定在磷酸化、非活性状态。 |