Regulating synaptic membrane exocytosis 4 (RIM4) is a protein that is believed to play a role in the complex process of synaptic transmission, specifically in the exocytosis of synaptic vesicles. Proteins that are involved in regulating synaptic membrane exocytosis are critical for the proper function of neurons, as they are directly implicated in the release of neurotransmitters into the synaptic cleft.Although specific details about RIM4 may not be as extensively documented as other proteins in the RIM (Rab3-interacting molecule) family, RIM proteins generally serve as important molecular scaffolds that organize the active zone of synapses. They interact with multiple proteins, including Rab3, Munc13, and RIM-binding proteins, to orchestrate the docking and priming of synaptic vesicles, preparing them for rapid release upon the arrival of an action potential.
The "4" in RIM4 suggests that it is one member of a larger family, and it may have unique or overlapping functions with other RIM proteins. RIM proteins typically contain several characteristic domains such as a zinc-finger domain, involved in protein-protein interactions, and a PDZ domain that can bind to C-terminal motifs of other synaptic proteins. These interactions ensure that the vesicles are correctly positioned at the presynaptic membrane and that the machinery necessary for vesicle fusion is assembled and regulated.Understanding the precise role of RIM4 in synaptic exocytosis would require detailed investigations, likely involving a combination of genetic, biochemical, and electrophysiological approaches. Studies may include analysis of RIM4 protein interactions, the effect of its overexpression or knockdown on synaptic function, and the identification of any unique regulatory elements within its structure. Elucidating the function of RIM4 could provide insights into synaptic plasticity mechanisms and the etiology of neurological disorders where synaptic dysfunction is a hallmark.
产品名称 | CAS # | 产品编号 | 数量 | 价格 | 应用 | 排名 |
---|---|---|---|---|---|---|
Forskolin | 66575-29-9 | sc-3562 sc-3562A sc-3562B sc-3562C sc-3562D | 5 mg 50 mg 1 g 2 g 5 g | ¥857.00 ¥1692.00 ¥8179.00 ¥15626.00 ¥23128.00 | 73 | |
佛司可林能激活腺苷酸环化酶,提高 cAMP 水平,从而增强 PKA 的活性,并有可能上调与突触功能相关的基因。 | ||||||
PMA | 16561-29-8 | sc-3576 sc-3576A sc-3576B sc-3576C sc-3576D | 1 mg 5 mg 10 mg 25 mg 100 mg | ¥451.00 ¥1455.00 ¥2369.00 ¥5528.00 ¥10481.00 | 119 | |
PMA激活蛋白激酶C(PKC),后者可磷酸化转录因子,从而增加突触蛋白的表达。 | ||||||
Rolipram | 61413-54-5 | sc-3563 sc-3563A | 5 mg 50 mg | ¥846.00 ¥2392.00 | 18 | |
罗利普仑会抑制 PDE4,导致 cAMP 水平升高,从而增强 CREB 磷酸化并上调与突触可塑性相关的基因。 | ||||||
Retinoic Acid, all trans | 302-79-4 | sc-200898 sc-200898A sc-200898B sc-200898C | 500 mg 5 g 10 g 100 g | ¥733.00 ¥3599.00 ¥6487.00 ¥11259.00 | 28 | |
维甲酸通过维甲酸受体影响基因转录物,并可能影响突触蛋白的表达。 | ||||||
Lithium | 7439-93-2 | sc-252954 | 50 g | ¥2414.00 | ||
锂能调节 GSK-3β 的活性,从而影响各种转录因子,并可能上调涉及突触可塑性的基因。 | ||||||
Fluoxetine | 54910-89-3 | sc-279166 | 500 mg | ¥3520.00 | 9 | |
氟西汀是一种选择性血清素再摄取抑制剂,可改变神经元的活动,并可能导致突触蛋白的基因表达发生变化。 | ||||||
N-Methyl-D-Aspartic acid (NMDA) | 6384-92-5 | sc-200458 sc-200458A | 50 mg 250 mg | ¥1207.00 ¥4084.00 | 2 | |
NMDA 受体激动剂可调节突触活性,并可能影响与突触可塑性有关的蛋白质的表达。 | ||||||
Gabapentin | 60142-96-3 | sc-201481 sc-201481A sc-201481B | 20 mg 100 mg 1 g | ¥587.00 ¥1038.00 ¥1489.00 | 7 | |
加巴喷丁与电压门控钙通道的α2δ亚基结合,可能会影响与神经传递有关的基因表达。 |